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ABSTRACT 

Silica microspheres were investigated as a back surface texturing agent for 

hydrogenated amorphous (a-Si:H) and nanocrystalline (nc-Si:H) silicon solar cells. 

Absorption of long wavelength photons (>600nm) is minimal for a-Si:H and nc-Si:H thin 

films which limits the efficiency of thin-film solar cells. Textured back reflectors are often 

used to increase the efficiency of these solar cells by diffusely reflecting light and trapping it 

in the absorbing layer.  

In this research, stainless steel substrates were spin coated with silica spheres to add 

texture. After a post-anneal, silver was deposited on the substrates. Two sphere diameters 

(250nm and 500nm) were investigated for their impact on diffuse reflection versus 

wavelength. It was found that the peak in diffuse reflection could be controlled by varying 

the sphere diameter. The thickness of the silver layer was determined by maximizing the total 

reflection, and diminishing returns were found for a silver layer greater than 300nm.  

External quantum efficiency measurements were used to characterize carrier 

collection versus wavelength. An increase in carrier collection at long wavelengths (>600nm) 

was observed for both a-Si:H and nc-Si:H solar cells on the silica sphere textured substrates. 

The thin a-Si:H solar cells often shorted out during testing which limits the industrial 

application of this back reflector. Shorting was not found to be a problem with the nc-Si:H 

devices.  
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CHAPTER 1.  INTRODUCTION 

1.1 Background 

Due to environmental concerns and diminishing supplies of fossil fuels, renewable 

energies will become an increasingly significant portion of the total global energy production 

in the near future. All renewable energy sources depend on the energy from the 

electromagnetic radiation from the sun except tidal energy and geothermal energy which use 

gravitational energy from the moon and the heat from the core of the earth, respectively. Of 

the solar renewable energy sources, solar cells most directly convert solar radiation into 

useable energy, converting photons directly into electric current.  

Before solar cells can become a major source of energy it is critical they can be 

manufactured economically with costs per unit energy on the order of coal and nuclear power 

plants(1). Crystalline silicon (c-Si) solar cells have enjoyed a majority share of the 

photovoltaic industry but have reached cost scaling limits due to the high demand for 

crystalline silicon wafers. An alternative method for making silicon solar cells is to grow 

hydrogenated amorphous silicon (a-Si:H) or nanocrystalline silicon (nc-Si:H) layers on cheap 

substrates using chemical vapor deposition (CVD) techniques. This uses significantly less 

silicon because silicon wafers used for photovoltaics are 200-300µm thick and nc-Si:H/a-

Si:H solar cells are on the order of 1µm. 

There are two basic cell structures that are used for a-Si:H or nc-Si:H solar cells 

depending on the deposition sequence: the superstrate (p-i-n) or substrate (n-i-p)(2). These 

structures are displayed schematically in Figure 1.1. For the n-i-p structure, light passes 

through a top contact made of a transparent conducting oxide (TCO). The composition of this 

layer is typically indium tin oxide (ITO) or zinc oxide (ZnO), each compound having a high 

transparency and conductivity. Light passes through the thin boron doped p-layer and is 

ideally absorbed in the intrinsic layer generating an electron-hole pair (EHP) that is driven to 
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the n/p layer by the internal electric field. In each structure, the light enters through the p-

layer to support hole collection due to the lower mobility of holes as compared to 

electrons(2). This is necessary because the highest percentage of light is absorbed at the top 

of the intrinsic layer.  

 
Figure 1.1  Schematic representations of a) p-i-n superstrate and b) n-i-p substrate with specular back 

reflectors 

  

1.2 Research Motivation 

Many of the long wavelength photons will not be absorbed in the solar cell structures 

shown in Figure 1.1 because the path length is only two times the thickness of the intrinsic 

layer. The probability of absorption is given by the equation, 

���� � 1 � �	
�� 

where ti is the thickness of the intrinsic layer and α is the absorption coefficient. Figure 1.2 

shows the absorption coefficient versus photon energy for nc-Si:H, c-Si, and a-Si:H.  

a) b) 
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Figure 1.2 Absorption of µc-Si:H, c-Si, and α-Si:H (1) 

Assuming an intrinsic layer thickness of 0.5µm for both a-Si and nc-Si, Table 1.1 

gives the probability of photon absorption at various wavelengths. 

Table 1.1 Probability of photon absorption at various wavelengths 

Wavelength (nm) Absorption Probability (nc-Si:H) Absorption Probability (a-Si:H) 

600 

650 

700 

750 

59.3% 

55.1% 

36.2% 

22.1% 

63.2% 

55.1% 

2.9% 

1.0% 

800 

850 

900 

18.1% 

13.5% 

5.8% 

0.2% 

0.03% 

0.01% 
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 It is clear from the data in Table 1.1 that a large number of longer wavelength 

photons are not being absorbed. The range from 800nm to 1100nm contains 36.2% of the 

solar photons with energy above the band gap of nc-Si:H(2). One method to increase 

absorption is to increase the thickness of the intrinsic layer, but the thickness is limited by the 

growth processes of a-Si:H and nc-Si:H. Furthermore, the stabilized fill factor decreases with 

increasing i-layer thickness(3).  

To overcome this trade-off, it is necessary to use light trapping schemes(3). A method 

for collecting long wavelength light is to replace the specular back reflector in Figure 1.1 

with a diffuse back reflector. Figure 1.3 demonstrates this effect for the superstrate (p-i-n) 

and substrate (n-i-p) structures with an arbitrary Lambertian1 back reflector.  

 
Figure 1.3 Schematic representations of a) p-i-n superstrate and b) n-i-p substrate demonstrating total 

internal reflection for an arbitrary Lambertian bac k reflector  

Light reflected at a reflection angle exceeding the critical angle, 

�� � sin	� ���
�


� 

will experience total internal reflection. The refractive index of a-Si:H is given by the 

equation(4), 

��	�� � 3.028�10�

 
 ! 2.595 

                                                 
1 A Lambertian surface is isotropic in that it reflects light of all wavelengths uniformly in all directions. 

a) b) 
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where λ is the wavelength of light in nanometers. The total internal reflection angle can then 

be calculated at each wavelength. It should be noted that as the wavelength increases, the 

total internal reflection angle also increases. This implies that it is more difficult to trap long 

wavelength light. For light with a wavelength of 800nm, the critical angle is 19o. The 

refractive index of nc-Si formed by PECVD was found to be 1.71(5) which gives a critical 

angle of 35.8o at the air/nc-Si interface. 

For a Lambertian back reflector, statistical optics can be used to show that the 

maximum path length increase is 4n2 where n is the refractive index of a-Si:H or nc-Si:H(6). 

This corresponds to a path length increase by a factor of about 28 for a-Si at 800nm and 

about 11.7 for nc-Si. This assumes 100% reflection from the back reflector which is not 

realizable in practice. In reality, the maximum obtainable enhancement factor is closer to 

10(7).  

Traditional crystalline silicon surface texturing is on an order larger than the thickness 

of nc-Si and a-Si thin film solar cells. It is necessary that textures have features on the same 

order of magnitude or less than the thickness of the film so that device shorting and device 

degradation is minimized(8). In this research, a new texturing technique is proposed and 

fabricated that meets this criterion. Figure 1.4 shows a schematic diagram of the proposed 

back reflector and solar cell structure. Silica micro-spheres (0.25µm and 0.5µm) texture the 

stainless steel substrate and are coated with a layer of highly reflecting silver.  

 
Figure 1.4 Schematic representation of the proposed p-i-n solar cell structure with a silica sphere 

textured back reflector 
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1.3 Literary Review 

In this section a discussion is given on current solar cell light trapping techniques. 

Also, a review of previous methods of microsphere monolayer deposition is made. 

1.3.1 Solar Cell Light Trapping 

Many light scattering techniques have been reported in the literature. The desired 

properties for a good substrate include high reflection, high light scattering, surface 

roughness features on the order of the thin film thickness, and low resistivity. A good 

superstrate should have the same properties but should have high transmission instead of 

reflection. Asahi Glass Co. has developed SnO2 coated glass substrates on which the solar 

cells with the maximum efficiencies have been built(3). Unfortunately, these substrates are 

expensive and not scalable to large area industrial solar cells(3). In this section a review of 

current scalable light trapping techniques is made. 

1.3.1.1 Etched ZnO/Glass Superstrate 

A popular light scattering technique is to sputter ZnO:Al on a glass substrate and then 

texture etch the surface with dilute HCl(3)(9)(10). This technique is of particular interest 

because most a-Si and nc-Si solar cell manufacturers already have sputtering systems in 

place(3). Also, sputtering is a low temperature process that is compatible with preceding 

process steps(3). Figure 1.5 shows SEM images of a ZnO film before and after etching in 

diluted HCl. The ZnO films can be deposited by either d.c. or r.f. sputtering. Films formed 

with d.c. sputtering exhibit increased resistance to etching. Also, deposition temperature and 

pressure influence the etching resistance of both r.f. and d.c. sputtered films(9). Typical 

pressures for d.c. ZnO sputtering are in the range of 5-10 mTorr and for r.f. sputtering the 

range is 1-5 mTorr(10). 
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Figure 1.5. SEM images of ZnO film a) before and b) after dipping in dilutted HCl (3) 

Superstrate a-Si p-i-n solar cells grown on the glass/texture ZnO substrates have 

shown significant increases in quantum efficiency. Figure 1.6 shows the quantum efficiency 

of an a-Si solar cell prepared on smooth ZnO and textured ZnO. The increases in QE are 

most significant in the regions beyond 600nm, which is expected because photons with lower 

wavelengths are trapped on the first pass through the intrinsic layer.   

 
Figure 1.6 Quantum efficiency of two a-Si:H p-i-n solar cells prepared on smooth and textured ZnO (9) 

a) b) 
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Using this substrate stacked junction a-Si/a-Si cells showed efficiencies of 10.2% 

demonstrating an increase in efficiency when compared to reference cells prepared on Asahi 

U type substrates with efficiencies of 9%(9).  

1.3.1.2 Etched ZnO/Ag Back Reflector 

Another light scattering technique again makes use of the texture etching property of 

ZnO, but it is used in an n-i-p substrate cell structure. ZnO is sputtered on a substrate and 

then etched in diluted HCl to add texture as shown in Figure 1.5. Silver is then evaporated or 

sputtered on ZnO film producing a back reflector with high reflexivity and scattering.  

 
Figure 1.7. Quantum efficiency of two a-Si:H n-i-p solar cells codeposited on smooth and texture-etched 

ZnO/Ag coated glass substrates and the quantum efficiency of a µc-Si solar cell prepared on texture-
etched ZnO/Ag 

Figure 1.7 shows the quantum efficiency of an a-Si:H n-i-p solar cell prepared on a 

textured ZnO/Ag substrate as well as a reference solar cell prepared simultaneously on a 

smooth ZnO/Ag substrate. Once again, the increases in quantum efficiency are mostly 
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notable for wavelengths greater than 600nm. Also shown in Figure 1.7 is the QE of a nc-Si 

solar cell that extends out to 1100nm due to the lower band gap of µc-Si.  

The back reflector in this research textures the substrate at room temperatures and 

atmospheric pressure with no dangerous chemicals. This is a significant advantage over 

textured ZnO back reflectors which require expensive sputtering and an etch with HCl.  

1.3.1.3 Sol-gel Silica Sphere Dip-Coating 

Pacific Solar developed a technique termed Crystalline Silicon on Glass (CSG) to 

create 2µm thin crystalline silicon solar cells with a conversion efficiency of 8.2%(11). A 

schematic view of the CSG structure is given in Figure 1.8 a). The substrate is glass textured 

by coating with silica nanospheres. A 1.6µm layer of silicon is deposited using silane gas 

chemical vapor deposition (CVD) and is then heat treated to crystallize the layer. Due to the 

nature of CVD, the silicon layer conforms to the roughness of the surface. A thin layer of 

aluminum is deposited on the top of the crystallized silicon which exhibits the same 

roughness of the substrate and acts as a back reflector. As demonstrated in Figure 1.8 a), a 

photon passes in through the glass substrate and reflects off the aluminum back surface. It 

will then reflect back from the glass/c-Si interface if the angle of incidence is sufficient.  

 
Figure 1.8 a) Schematic view of the CSG solar cell structure and b) silica sphere sol-gel dip coating 

process (8) 

a) b) 
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The substrate is prepared using a patented technique in which a glass substrate is 

lowered into a sol-gel glass solution with suspended silica (SiO2) beads. As the substrate is 

pulled from the solution, a thin layer of glass sol-gel and silica beads remain. This process is 

represented in Figure 1.8 b).The thickness of the sol-gel layer and the surface density of the 

silica spheres can be accurately controlled by the pull rate of the substrate and the viscosity 

of the sol-gel (12). 

1.3.2 Sphere Deposition Techniques 

Many methods for forming nano/microsphere monolayers have been reported in the 

literature. In this section, the two methods that were applied most frequently in this research 

are reviewed.  

1.3.2.1 Langmuir-Blodgett (LB) Technique 

One commonly used method to form microsphere or nanosphere monolayers is the 

Langmuir-Blodgett method. In this method, a monolayer of particles self assembles at the 

air/water or air/oil interface. This monolayer can then be transferred to a substrate by slowly 

pulling a substrate through the monolayer.  

 
Figure 1.9. SEM image of a monolayer of 450nm spheres deposited on glass microscope slides by the 

Langmuir-Blodgett technique(13) 
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Silica sphere monolayers have been formed by the Langmuir-Blodgett method by 

controlling the hydrophobic-hydrophilic properties of the particles which were dissolved in 

ethanol(13). The solution was ultrasonicated for 30 minutes and then dropped into water. 

After the monolayer self assembled at the air/water interface, a glass microscope slide was 

pulled vertically at 1 mm/mi (13). Figure 1.9 shows an SEM image of a monolayer of 450nm 

spheres formed with this technique.  

This technique was explored for this research but eventually abandoned for a more 

simplistic spin coating technique.  

1.3.2.2 Microsphere Spin Coating 

J. Hulteen et al. developed a method for depositing nanospheres on an arbitrary 

substrate for nanoscale lithography(14). Polystyrene nanospheres with a diameter of 

264nm±7nm were purchased in a water solution from Interfacial Dynamics Corporation. This 

solution was then diluted in the surfactant Triton X-100/methanol 1:400 by volume(14). The 

solution was spun onto the substrate at 3600RPM and with a 90% success rate in which large 

defect free packed sphere regions were observed over the entire substrate.  

1.3.2.3 Bragg Diffraction of Nanospheres 

P. Jiang et al. developed a method to form a non-closed packed monolayer of 315nm 

silica spheres on a wafer by spin-coating. The wafer was primed with APTCS and was spin 

coated at 200RPM for 120s, then at 300RPM for 120s, then at 1000RPM for 60s, followed 

by 3000RPM for 20s, 6000RPM for 20s, and finally 8000RPM for 360s(15). Figure 1.10 a) 

shows a cross-sectional SEM image of a monolayer made by this process. The reflectivity 

spectrum for a sample with a lattice spacing of √2% was calculated using a scalar wave 

approximation (SWA) and is shown as the red curve in Figure 1.10 b). The measured 

response for a fabricated monolayer with approximate √2% spacing is shown as the black 

curve in Figure 1.10 b)(15). A minimum in reflection occurs at a wavelength slightly greater 
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than the sphere diameter of 315nm, and a peak occurs at a wavelength slightly greater than 

two times the sphere diameter. This is due to the Bragg diffraction constructive and 

destructive interferences. These maxima and minima have been observed in the reflection 

spectrum of the back reflectors in this research. 
 
 

 
 

Figure 1.10. a) Cross-sectional SEM image of a monolayer made by spin coating and b) spectral 
reflectivity of the monolayer in black and theoretical reflectivity in red(15) 

a) b) 
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CHAPTER 2.  METHODOLOGY AND PROCEDURES 

2.1 Nanosphere Deposition 

Silica (SiO2) microspheres were purchased from Fiber Optic Center, Inc. The spheres 

(called AngstromSphere) were 0.25µm and 0.5µm with a standard deviation of less than 

10%. Figure 2.1 shows an SEM image of the silica spheres. Table 2.1 summarizes the 

physical properties of the spheres. 

 
Figure 2.1. SEM photograph of AngstromSphere uniform silica spheres(16) 

Table 2.1. Summary of the physical properties of AngstromSphere silica spheres (16) 

Size 0.25µm and 0.5µm 

Density 2.0 grams/cc 

Structure Amorphous 

Purity >99.9% 

Dielectric Constant < 3.8 

Refractive Index ~1.38 – 1.46 

The first step in the silica sphere deposition process is to prepare the colloid. The 

AngstromSphere silica spheres came in a dry form. The surface of the silica spheres in this 

form has a large quantity of hydrophilic silanol (Si-OH) groups and therefore the spheres 

disperse well in water. Triton X-100 was used as a surfactant to lower the surface tension of 
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the suspension and allow easier spreading of the spheres during spin coating. To determine 

the amount of surfactant that was necessary, a sweep of concentrations was performed. A 

solution was prepared with 92% Ethanol and 8% silica spheres by weight and ultrasonicated 

for 1 hour after the addition of Triton X-100. Three substrates were then spin coated at 

500RPM for 60 seconds and are shown in Figure 2.2. Substrate S59 was spin coated with no 

Triton X-100, and it is visibly clear that the spheres were not able to spread evenly across the 

substrate. Alternatively, S61 was spin coated with 5.9% Triton X-100 (by weight) and no 

spheres attached to the stainless steel surface. S60 was spin coated with 0.89% Triton X-100 

and a sphere monolayer was formed.  

   
Figure 2.2. Substrates S59, S60, and S61 formed by spin coating colloids with 0%, 0.89%, and 5.7% of 

Triton X-100 by weight 

Spin coating water/Triton-X100/silica sphere colloids resulted in large clusters of 

agglomerated silica spheres. It was found that adding ethanol to the colloid reduced this 

effect, but purely ethanol colloids also resulted in large clusters of agglomerated spheres. 

Figure 2.3 shows SEM images of silica sphere agglomeration for three stainless steel 

substrates spin coated at 500 RPM. The colloids used were 7% silica sphere, 1% Triton X-

100, various amounts of ethanol, and the remaining percentage DI water. Each colloid was 

ultrasonicated for 1 hour. 

 

 

S59 S60 S61 
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Figure 2.3. SEM images of silica sphere 
silica spheres (by weight) a) 0% ethanol b) 30.5% ethanol and c) 93% ethanol

After these experiments, the optimum solution was determined to be 0.5% Triton X

100, 7% silica spheres, 25% ethanol, and 67.5% 

summarized in a chart in Figure 

Figure 

After the colloid is formed it is 

stainless steel substrates are cleaned before spin coating in three steps: a 15 minute acetone 

boil, a 15 minute methanol ultrasonication, and a 15 minute boil in a solution of equal parts 

DI water, ammonium hydroxide, and hydrogen peroxide.

then dropped at the center of a

spin coater can be controlled to spin at a rate between 400RPM and 10000RPM. The spin 

rate was not fixed but instead left as a design variable for the substrates. 

Triton X

a) 

15 

  
. SEM images of silica sphere agglomeration for spin coated substrates using colloids of 7% 

silica spheres (by weight) a) 0% ethanol b) 30.5% ethanol and c) 93% ethanol

After these experiments, the optimum solution was determined to be 0.5% Triton X

100, 7% silica spheres, 25% ethanol, and 67.5% deionized water (DI) water. This solution is 

Figure 2.4 and was used for all colloid depositions in this research

Figure 2.4. Summary of the colloid composition 

After the colloid is formed it is dispersed by ultrasonication for one hour.

stainless steel substrates are cleaned before spin coating in three steps: a 15 minute acetone 

boil, a 15 minute methanol ultrasonication, and a 15 minute boil in a solution of equal parts 

ydroxide, and hydrogen peroxide. Five to ten drops of the colloid are 

then dropped at the center of a cleaned stain steel (SS) substrate resting on a spin coater. The 

be controlled to spin at a rate between 400RPM and 10000RPM. The spin 

e was not fixed but instead left as a design variable for the substrates.  

0.50% 7.00%

25.00%

67.50%

Triton X-100 Silica Spheres Ethanol DI Water

b) c) 

 
agglomeration for spin coated substrates using colloids of 7% 

silica spheres (by weight) a) 0% ethanol b) 30.5% ethanol and c) 93% ethanol 

After these experiments, the optimum solution was determined to be 0.5% Triton X-

water. This solution is 

and was used for all colloid depositions in this research. 

 

dispersed by ultrasonication for one hour. The 

stainless steel substrates are cleaned before spin coating in three steps: a 15 minute acetone 

boil, a 15 minute methanol ultrasonication, and a 15 minute boil in a solution of equal parts 

Five to ten drops of the colloid are 

substrate resting on a spin coater. The 

be controlled to spin at a rate between 400RPM and 10000RPM. The spin 
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The next step in the sphere deposition process is a post

performed at 500oC for 30 minutes. The anneal is necessary because a small amount of 

residual moisture from the colloid remains on the substrate after the sphere coating process. 

A solar cell was made on a substrate without a post

shorted. Figure 2.5 a) shows an SEM image of a defect in 

without a substrate anneal. Figure 

a clear indicator of evaporation during the film growth. 

Figure 2.5. Defects resulting from

Table 2.2 gives a summary of the silica sphere deposition process designed.

Table 2.2. Summary of silica sphere deposition steps

Step 1 Prepare a colloid: 0.5% Triton X

Step 2 

Step 3 Drop 5 to 10 drops to center of cleaned SS substrate

Step 4 

Step 5 

a) 

16 

The next step in the sphere deposition process is a post-anneal. The anneal was 

C for 30 minutes. The anneal is necessary because a small amount of 

e from the colloid remains on the substrate after the sphere coating process. 

A solar cell was made on a substrate without a post-anneal and all deposited contacts were 

a) shows an SEM image of a defect in the a-Si:H solar cell formed 

Figure 2.5 b) shows a fissure formed in the a-Si:H thin film that is 

a clear indicator of evaporation during the film growth.  

  

. Defects resulting from residual moisture evaporation during the a-Si:H

gives a summary of the silica sphere deposition process designed. 

mary of silica sphere deposition steps 

Prepare a colloid: 0.5% Triton X-100, 7% silica spheres, 25% ethanol

Disperse spheres with 1 hour ultrasonication 

Drop 5 to 10 drops to center of cleaned SS substrate

Spin at a rate from 400RPM to 10000RPM 

Anneal at 500oC for 30 minutes 

b) 

anneal. The anneal was 

C for 30 minutes. The anneal is necessary because a small amount of 

e from the colloid remains on the substrate after the sphere coating process. 

anneal and all deposited contacts were 

Si:H solar cell formed 

Si:H thin film that is 

 

Si:H film growth 

 

100, 7% silica spheres, 25% ethanol 

Drop 5 to 10 drops to center of cleaned SS substrate 
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After the anneal, the silica spheres are attached strongly to the stainless steel substrate and 

are not removed with high pressure N2 gas. The next step is to evaporate silver on the 

substrate. 

2.2 Evaporation 

The first step of the evaporation process is to bring the evaporation chamber to a 

vacuum. This decreases the evaporation temperature of the metal and ensures that the metal 

vapor has a clear path to the substrate. A roughing pump is used to reduce the pressure to just 

less than 1 Torr and a vertical turbo pump then brings the chamber down to the desired 

vacuum pressure of ~ 1 µTorr. Depending on the state of the evaporation chamber, a varying 

number of N2 purges are necessary to bring the chamber to the desired vacuum.  

With the chamber at vacuum, the metal evaporation process can begin. For silver 

evaporation, a degas step is necessary for the optimum film quality. With the shutter closed, 

current is increased through the tungsten boat to heat up the silver wire or pellets. The 

temperature is maintained just below the evaporation point of silver for a period of time. 

During this time, all compounds on the surface of the silver with an evaporation point less 

than silver will be “degassed.” During this process the pressure of the chamber will increase. 

When the pressure returns to the initial value, the current is increased and the evaporation of 

silver begins.  

A Maxtek TM200R thickness monitor is used to simultaneously measure the 

thickness and growth rate of the film. This is done with a quartz oscillator which changes its 

resonant frequency due to the mass of material deposited(17). For silver depositions, the 

growth rate was controlled to be between 0.4 nm to 0.5 nm per second. This rate was 

determined by previous experiments in our group to form a silver layer with maximum 

reflectivity. For aluminum evaporations, the vapor needs to have minimum exposure to 

oxygen and therefore was controlled to be between 3nm and 4nm per second. 
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2.3 PECVD of a-Si:H and nc-Si:H 

Chemical vapor deposition (CVD) is a chemical process that is often used to deposit 

high-purity and accurately controlled thin films. Plasma enhanced CVD (PECVD) is a 

modification to CVD in which a plasma is used to dissociate precursor gases. In this 

research, PECVD was used to form a-Si:H and nc-Si:H layers. Diborane and phosphine were 

introduced to form p+ and n+ layers. Figure 2.6 shows a schematic diagram of the plasma 

reactor used to deposit all n+, p+, and intrinsic amorphous silicon layers. The chamber is 

brought up to atmospheric pressure with N2 gas to load the substrate. Due to the horizontal 

chamber design, the substrate is loaded from the top and is positioned vertical to the ground. 

This orientation prevents debris from resting on the substrate, falling into the vacuum system, 

or resting on the electrode.    

 

Figure 2.6. Schematic diagram of the plasma reactor(18) 

With the substrate loaded in the chamber a mechanical roughing pump is used to 

bring the chamber down to a pressure of about 1 Torr. A horizontal turbo pump then brings 

the pressure of the chamber down to ~0.1 µTorr. Gas is then introduced into the chamber 

through different flow lines. It can be seen in Figure 2.6 that the dopant line is kept separate 

from the intrinsic/plasma line. This is because dopants are parasitic to the intrinsic films. 
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Intrinsic nc-Si films are deposited in a separate reactor because their performance is 

particularly limited by parasitic dopants. The plasma line carries hydrogen and helium. The 

intrinsic line carries silane (SiH4) gas and merges with the plasma line before the reactor. The 

dopant line carries methane (CH4), phosphine (PH3), and diborane (B2H6) depending on the 

desired composition of the film. Methane is used in conjunction with phosphine and silane to 

form an n+ silicon carbide layer. A normal n+ is formed with just phosphine and silane while 

a p+ is formed with diborane and silane. The intrinsic layer is formed with just silane.  

For all the thin film layers, the gas flow is accurately regulated and the pressure of the 

chamber is maintained to be on the order of mTorrs by adjusting the turbo pump valve. The 

substrate is heated and an r.f. power is applied to the electrode. This forms a glow-discharge 

plasma in which the gases lose electrons which are subsequently accelerated to high energies 

by the r.f. power. These high energy electrons bombard and dissociate the silane, diborane, 

and phosphine gases. Using the plasma to dissociate the gases allows the substrate to be at a 

lower temperature which promotes the growth of amorphous silicon.  

Figure 2.7 shows a schematic representation of the a-Si:H solar cell fabricated in this 

research. The dimensions are indicated correctly but the image itself is not to scale. 

Similarly, Figure 2.8  shows a schematic representation of the nc-Si:H solar cell fabricated in 

this project. The total thickness of the amorphous cell is about 510nm which is only two 

times the size of the 250nm spheres and is similar to the size of the 500nm spheres.  

 

 
Figure 2.7. Schematic diagram of the dimensions of the amorphous silicon solar cell fabricated in this 

project 
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This caused trouble during device characterization where device shorting occurred 

frequently. The thickness of the nc-Si:H device is about 1.8µm which is more than seven 

times the diameter of the 250nm spheres on which the devices were built. For this reason, 

device shorting during characterization was not a problem for the nanocrystalline solar cells.  

 
Figure 2.8. Schematic diagram of the dimensions of the nanocrystalline silicon solar cell fabricated in this 

project 

2.4 ITO Sputtering 

A top contact has to be deposited on the solar cell that is both transparent (to allow 

the passage of light) and conductive (to collect the current). For the solar cells fabricated in 

this project a 70nm ITO layer is used to form an antireflective top contact(19). The equation 

that governs the antireflective property of a thin film is(20), 

�& �  
4 

This equation, unfortunately, indicates that it is only possible to have the antireflective 

property at a one wavelength.  

The first step of the sputtering process is to bring the chamber down to a vacuum. A 

roughing pump is used to bring the chamber below 1 Torr, and a vertical turbo pump is then 

used to bring the chamber down to a base pressure of ~1µTorr. The substrate is then heated 
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to 225oC. Argon and oxygen/argon gas flows are introduced to the chamber in a 400:1 ratio. 

The base pressure of the chamber is controlled to be 5mTorr by adjusting the turbo pump 

valve. A d.c. power of 20W is then applied to the electrode. The target is conditioned with 

the shutter closed for 2 minutes before a deposition for 2.5 minutes. The film growth rate 

under these conditions is about 4.5A/s, so this deposition time yields a thickness of about 

70nm.  
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CHAPTER 3.  CHARACTERIZATION 

3.1 Back Reflector Characterization 

3.1.1 Scanning Electron Microscope (SEM) Imaging 

Nanosphere packing density, agglomeration, and back reflector defects were 

characterized using a JEOL JSM 6100 scanning electron microscope. The maximum 

magnification is 300000X and the resolution is 40Ǻ which is sufficient to image the 250nm 

and 500nm spheres used in this research. The chamber is brought to a vacuum by a 

mechanical roughing pump and a vertical diffusion pump, and the typical pressure during 

operation is about 20µTorr. 

The nanosphere packing density is an important characteristic of the back reflectors 

and is defined to be the number of spheres times the area of spheres divided by the area of 

the containing region. 

�()*+�, %��.+/0 �
#�23454� · 7 �%�23454

2 �



89�(  

The packing density was characterized using the contrast between the silica spheres and the 

substrate in the SEM images in a method presented in the Appendix.  

3.1.2 Total and Diffuse Reflection 

The total and diffuse reflections of the back reflectors were measured using Varian’s 

Cary 5000 UV-Vis-NIR spectrophotometer. The wavelength range is from 175nm to 3300nm 

which fully covers the absorbable wavelengths in both amorphous and nanocrystalline silicon 

films. The Cary 5000 is a double beam spectrophotometer. Light from the lamp source is 

focused and then split into two separate time-interleaved beams. In this way, the full intensity 

of the light source is available to each light path for a half period and the same photo-detector 

can be used to measure the light from each path for a half period. The intensity of one half 
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period of the light beam is transmitted through or reflected off a sample and detected by the 

photo-detector. This is then normalized to the intensity of light of the other half period which 

is the reference beam that is either 100% transmission of 100% reflection.  

To measure diffuse reflection the DRA-2500 integrating sphere was used. Light is 

reflected off of a sample placed at an entrance port to the sphere. The specular reflection is 

blocked from the sphere, and the diffusely reflected light is reflected by the Lambertian 

interior surface of the sphere. The sphere will preserve the power of the light but destroy the 

spatial information effectively integrating the non-specular reflected light. Total reflection is 

measured in a similar way, but the specular reflection is not blocked and the integrating 

sphere sums the total reflected light.  

3.2 Device Characterization 

To characterize both nc-Si and a-Si devices quantum efficiency (QE), QE versus 

voltage, and I-V measurements were taken.  

3.2.1 I-V Measurement 

The first measurement taken on a solar cell in this research is the I-V measurement. 

This measurement identifies shorted devices and gives information about the quality of a 

functioning device. The I-V measurement apparatus shines a 120V and 300W ELH 

Quartzline lamp bulb perpendicular to the device. The ELH bulb is used to imitate the AMI 

1.5G light spectrum. It is important that the bulb have a long lifetime because the variation in 

the spectral irradiance for different bulbs out of the same case is much greater than the 

change with the bulb age(21). 

A reverse bias voltage is applied to the device and the current is measured. This 

measurement provides the following characteristic parameters: short circuit current (ISC), 

open circuit voltage (VOC), fill factor (FF), and efficiency (η). ISC is a measurement of the 

current delivered by the device with zero applied voltage (short circuit). VOC is the voltage 
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required so that the device is delivering zero current (open circuit). ISC and VOC correspond to 

the maximum current and maximum voltage from the device, respectively, but power 

delivered is zero in each of these cases. Power delivered from the device is the product of the 

voltage and current of the device. If Vm and Im are defined as the voltage and current at which 

the power delivered from the device is a maximum, then the FF can be defined as, 

:: � ;<=<
;>?=�?

 

and the efficiency can then be written as, 

@ � =�?;>?::
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where Pincident is the total power of the incident photon flux, which is typically given as 

100mW/cm2 for the AMI 1.5 light spectrum. Shunt and series resistance can also be 

calculated from the I-V curve. Shunt resistance is taken as the inverse of the slope of the 

curve at negative voltages because the current contribution due to the pn-junction is very 

small for negative voltages. The series resistance is taken as the slope at the open circuit 

voltage because at this point most of the voltage will drop across the series resistance 

because the small signal diode resistance is small.  

3.2.2 External Quantum Efficiency (QE)  

External quantum efficiency in solar cells is defined as the number of electrons 

collected divided by the number of photons incident on the device. A schematic of the 

apparatus used to measure QE is shown in Figure 3.1. A monochromatic light is chopped at a 

frequency of about 13.5Hz and focused on the device using two focusing lenses and a mirror. 

The current is converted to a voltage by a transresistance amplifier and then a lock-in 

amplifier measures the voltage very accurately. Table 3.1 summarizes the wavelengths and 

applied biases used to measure various solar cells relevant to this research.  
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Figure 3.1. Quantum efficiency measurement apparatus(22) 

The measured voltage is calculated by normalizing it to a reference crystalline silicon 

cell for which the QE is known. 

CD��<2E4 � CD54F454A�4
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This QE data is then typically normalized with the maximum at 90% so they can be easily 

compared with other devices.  

 

Table 3.1. Wavelength range and applied biases for a-Si and nc-Si solar cells with and without back 
reflectors (BRs) 

Solar cell type Wavelength range (nm) Applied biases 

Amorphous silicon 400 to 800 0V and 0.5V 

Amorphous silicon with BR 400 to 800 0V and 0.5V 

Nanocrystalline silicon 400 to 900 0V and -0.5V 

Nanocrystalline silicon with BR 400 to 1100 0V and -0.5V 
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CHAPTER 4.  RESULTS AND DISCUSSION 

4.1 Diffuse Reflection 

4.1.1 500nm Silica Sphere Back Reflectors 

In this section, diffuse reflection results are given for stainless steel substrates 

textured with 500nm silica spheres and coated with 150nm of silver. The substrates were 

prepared with the methodology presented in Chapter 2. A sweep of the spin coating rate from 

500RPM to 7000RPM was performed. Silica sphere monolayers were achieved and SEM 

images of these monolayers can be seen in Figure 4.2 a-f). The silica sphere packing density 

is a strong function of the spin rate. Figure 4.1 is a plot of the packing density (found using 

the method in the Appendix) versus the spin rate. The packing density decreased dramatically 

as the centripetal force during spin coating increased. The dashed line in Figure 4.1 shows 

the packing density of close packed spheres for reference. Close packed spheres have a 

packing density of the area of a sphere divided by the area of a unit cell of the sphere, 78.5%. 

The diffuse reflection for these substrates is shown in Figure 4.3. As the spheres go 

from nearly perfectly close packing density (Figure 4.2 a) to a packing density of 35% 

(Figure 4.2 e), minima in the diffuse reflection form at a wavelength of about 600nm and a 

maxima form at a wavelength of about 1100RPM. This is similar to the maximum and 

minimum points found in the research and simulations by P. Jiang et al.(15). The smoothing 

of the reflection peak and valley is presumed to be due to the lack of a long range order but 

this should be verified by simulation. The optimum diffuse reflection occurs for a packing 

density of 35% which corresponds to a 4000RPM spin rate. For lesser densities, the diffuse 

reflection begins to decrease and becomes specular reflection. This was expected because the 

planar substrate is being revealed. It should be noted that a packing density of 0% would be a 

flat silver substrate with nearly 100% specular reflection.    
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Figure 4.1. Percentage packing density versus spin coating rate for 500nm sphere substrates (close 

packed density given for reference) 

 
 

 
Figure 4.2. SEM images of 500nm sphere back reflectors spin coated at a) 500RPM, b) 1000RPM,           

c) 1700RPM, d) 2000RPM, e) 4050RPM, and f) 7000RPM illustrating the packing density 
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Figure 4.3 Diffuse reflection versus wavelength for various spin rates (750RPM to 4000RPM) for 500nm sphere colloid2

                                                 
2 The discontinuity in the diffuse reflection at a wavelength of 800nm is cause by a detector and grating changeover 
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4.1.2 250nm Silica Sphere Back Reflectors 

In this section, diffuse reflection results are given for stainless steel substrates 

textured with 250nm silica spheres and coated with 150nm of silver. The substrates were 

prepared with the methodology presented in Chapter 2. A sweep of the spin coating rate from 

500RPM to 10000RPM was performed. Contrary to the results for the 500nm silica spheres, 

monolayers were not formed for all spin rates. Figure 4.5 a) and b) show back reflectors with 

multilayers of 250nm spheres prepared by spin coating rates of 500RPM and 1000RPM, 

respectively. The back reflector in Figure 4.5 c) shows a close packed sphere monolayer 

generated at a spin rate of 1700RPM. This indicates the minimum spin rate to produce a 

monolayer of spheres. For 500nm spheres, this spin rate was around 500RPM. Considering 

only kinetics, it should require a lesser centripetal force to spread smaller/lighter spheres. 

This is not the case because particles at these dimensions are dominated by the van der Waals 

force which is stronger for the 250nm spheres. Figure 4.5 d-f) show back reflectors with 

decreasing packing density for increases spin rate, as expected. Figure 4.4 is a plot of the 

packing density (found using the method in the Appendix) versus the spin rate. For spin rates 

less than 1700RPM the packing density saturates at the close packing density as expected.  

The diffuse reflection for these substrates is shown in Figure 4.6. There is a trend 

very similar to that seen for the diffuse reflection of the 500nm back reflectors in Figure 4.3. 

For close packing and multilayers, it appears that a peak is forming at around 300nm. 

Unfortunately, silver reflection begins to give way to transmission at wavelengths around 

450nm so a peak is formed early at around 480nm. A peak is again formed at a little more 

than twice the diameter of the spheres at about 650nm for low packing densities. Also, the 

reflection at 400nm begins to decrease for decrease packing densities, possibly indicating the 

formation of a minimum at around 300nm. Unfortunately, the data does not extend to low 

enough wavelengths to make a suitable conclusion.  
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Figure 4.4. Percentage packing density versus spin coating rate for 250nm sphere substrates (close 

packed density given for reference) 

 
 

 
Figure 4.5. SEM images of 250nm sphere back reflectors spin coated at a) 500RPM, b) 1000RPM,           

c) 1700RPM, d) 2500RPM, e) 8000RPM, and f) 10000RPM illustrating the packing density
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Figure 4.6 Diffuse reflection versus wavelength for various spin rates (500RPM to 10000RPM) for 250nm sphere colloid
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The peak diffuse reflection in Figure 4.6 is 80% and is for a substrate spin coated 

with 250nm spheres at 7000RPM and coated with 150nm of silver. Figure 4.7 shows the 

total, diffuse, and specular reflection of a similar substrate spin coated at 8000RPM. The total 

reflection is just greater than 80%, which was not expected for 150nm of silver. This 

decrease in total reflection is attributed to the shadowing effect of the silver evaporation. The 

spheres shadow the substrate from silver, and the sides of the silica spheres are not initially 

coated with silver. Therefore, there are areas of the back reflector that absorb light. Thicker 

layers of silver were necessary to lessen this reflection loss. Figure 4.7 gives the total, 

specular, and diffuse reflection for three substrates spin coated at 8000RPM and coated with 

150nm, 250nm, and 300nm of silver. The peak total reflection was nearly 95% and 300nm 

was determined to be the point of diminishing returns. The solid line reflection plot in Figure 

4.7 corresponds to the reflexivity of the substrate used for all solar cell devices built on 

250nm sphere back reflectors.  

 
Figure 4.7. Total, specular, and diffuse reflection for 250nm sphere back reflectors coated with 1500Ǻ, 

2500Ǻ, and 3000Ǻ 
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Aluminum coated spheres were considered as a substrate for a-Si:H solar cells. Figure 

4.8 is a plot of the total, specular, and diffuse reflection of 300nm of aluminum on 250nm 

spheres spin coated at 8000RPM. Aluminum transmits light at a wavelength of around 

850nm, which can be observed in the dip of total reflection at this point. For this reason 

aluminum coated back reflectors are sufficient for a-Si cells because the band gap is 1.6 to 

1.8eV which implies that most photons of wavelengths greater than 775nm will never be 

absorbed. This dip in reflection is problematic for nc-Si solar cells which have a band gap of 

1.12eV and can absorb light up to a wavelength of 1100nm. Also, the total reflection of 

aluminum is less than that of silver. It is believed that the aluminum back reflector would be 

a feasible alternative to the silver reflector, but no devices were made to confirm this 

postulation. 
 

 
Figure 4.8. Total, specular, and diffuse reflection of 300nm of aluminum on 250nm spheres spin coated at 

8000RPM 
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4.2 Nanocrystalline Silicon Devices 

Four nc-Si:H devices were built on 250nm sphere substrates spin-coated at 8000RPM 

coated with 300nm of silver. The devices were built with a target intrinsic layer thickness of 

1.5µm (see Figure 2.8 and accompanying discussion for other device dimensions). Figure 4.9 

a) shows an SEM image of the nc-Si device 1-6798 built on a 250nm sphere back reflector. 

The silicon tends to collect around the spheres, and there are defects in the solar cell 

structure. Figure 4.9 b) shows the same device looking down on an ITO contact. Due to the 

total thickness of the nc-Si films, shorting was not found to be a problem in device testing. 

 

  
Figure 4.9. SEM images of a) a nc-Si solar cell (1-6798) on 250nm sphere back reflector and b) the same 

solar cell looking down on the ITO contact 

The performance of the first device (1-6798) degraded significantly after an ITO 

anneal step and therefore QE data was not collected. This step was subsequently removed 

from the process. Before the anneal, I-V data was collected and the VOC was 0.447V, ISC was 

2.17mA, and FF was 49.4.  Three other devices were made without performing an ITO 

anneal, and the normalized QE for these devices are shown in Figure 4.10 and Figure 4.11 

with 0V and -0.5V applied biases, respectively.  

a) b) 
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Figure 4.10. Normalized quantum efficiency (Vbias=0V) for three nc-Si:H devices (1-6812,1-6817, and 1-

6824) on 250nm sphere back reflectors. Devices on SS and Ag substrates plotted for reference. 

 

Figure 4.11. Normalized quantum efficiency (Vbias=-0.5V) for three nc-Si:H devices (1-6812,1-6817, and 
1-6824) on 250nm sphere back reflectors. Devices on SS and Ag substrates plotted for reference. 

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

400 600 800 1000

N
or

m
al

iz
ed

 Q
E

Wavelength (nm)

Nor QE (0V) 1-6812

Nor QE (0V) 1-6817

Nor QE (0V) 1-6824

Ref SS (0V)

Ref Ag (0V)

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

400 600 800 1000

N
or

m
al

iz
ed

 Q
E

Wavelength (nm)

Nor QE (-0.5V) 1-6812

Nor QE (-0.5V) 1-6817

Nor QE (-0.5V) 1-6824

Ref SS (-0.5V)

Ref Ag (-0.5V)



www.manaraa.com

 36  

 

Included in the QE plots in Figure 4.10 and Figure 4.11 are reference devices built on 

a bare stainless steel substrate (SS) and on 500Ǻ of silver on a SS substrate. Figure 4.12 

shows the ratio of each device QE to the QE of the SS and Ag reference substrates. From this 

normalization is it clear that a significant portion of the enhancement over the SS substrate 

comes from the highly reflective property of silver: there is a factor of 7 increase at 900nm 

over the device on SS and only a factor of 2 increase over the device on Ag. Silver tends to 

agglomerate at the high temperatures and moderate pressures that the substrate is exposed to 

during the growth of the solar cell. It is suspected (but not experimentally verified) that the 

silver agglomerated on the substrate and increased the diffuse reflection. Regardless of this, 

the factor of 2 improvement at 900nm demonstrates a significant increase in light trapping.  

 
Figure 4.12. QE enhancement ratios for devices 1-6812, 1-6817, and 1-6824. Enhancement over SS 

reference as dashed curves and enhancement over Ag as solid curves. 

A summary of the characteristics of the nc-Si solar cells built on the 250nm back 

reflectors is given in Table 4.1 along with the parameters of the reference devices. The 

devices showed an average increase in short circuit current of 5% as compared to the SS 

reference but a decrease of 4.3% as compared to the Ag reference. The average JSC 

(measured by summing current in the QE) showed a 15% increase over the SS reference but 

showed no appreciable change as compared to the Ag reference. 
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Table 4.1. Summary of device characteristics for nanocrystalline solar cells and reference cells 

 

Device 
 

Substrate 
VOC 
(V) 

ISC 
(mA) 

 

FF 
QE ratio to 

SS at 900nm 
QE ratio to 

Ag at 900nm 
JSC from QE 
(mA/cm2) 

1-6798 250nm BR 0.447 2.17 49.4 - - - 

1-6812 250nm BR 0.474 2.25 45.1 7.24 2.31 17.46 

1-6817 250nm BR 0.475 2.28 50.4 7.45 2.37 17.58 

1-6824 250nm BR 0.4679 2.025 53.7 6.39 2.04 16.32 

1-6808 SS 0.4705 2.077 34.1 1 0.3189 14.87 

1-6838 SS/500Ǻ Ag 0.4939 2.276 53.3 3.136 1 17.34 

4.3 Amorphous Silicon Devices 

4.3.1 Devices on 500nm Sphere Back Reflectors 

Four a-Si:H devices were built on spin-coated 500nm sphere substrates with 150nm 

of silver. The first two substrates were spin coated at 500RPM (2-11925 and 2-11961) and 

the second two at 1300RPM (2-12006 and 2-12035). It should be noted that these were not 

determined to be the optimum back reflectors from diffuse reflections measure, but the test 

bench to measure diffuse reflection was not operational at the time that these devices were 

made. These back reflectors were chosen for their close-packed characteristics without any 

spectrum data.  

The devices were built with a target intrinsic layer thickness of 0.25 µm (see Figure 

2.7 and accompanying discussion for other device dimensions). Device shorting was a 

frequent problem during testing and characterization likely due to the fact that the 

dimensions of the device were on the order of the dimensions of the features of the back 

reflector. Figure 4.13 shows an optical micrograph at 40X magnification of the ITO contact 

of an a-Si solar cell built on a 500nm sphere substrate. The image is focused on a short that 

occurred from placing a contact during device testing. Another thing to note from the image 

are the defects in the solar cell structure. These areas were determined by SEM imaging to be 
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areas with no silica spheres. This issue was resolved by cleaning the SS substrates before 

spin coating as detailed in Chapter 2. This cleaning step was performed on all of the 

substrates other than those presented in this section. 

 
Figure 4.13. Optical micrograph (40X) the ITO contact of an a-Si solar cell displaying a short developed 

during characterization. Defects identified with ovals. 

Figure 4.14 a) shows an SEM image of the a-Si device 2-11961 built on a 500nm 

sphere back reflector. The silicon tends to group around the spheres and there are empty 

patches in the solar cell structure. Figure 4.14 b) shows the same device looking down on an 

ITO contact. The coverage of the features of the back reflector is significantly less than that 

of the nc-Si device as seen in Figure 4.9. It is easy to imagine a probe tip penetrating this 

surface, resulting in a short like that displayed in Figure 4.13. 

      
Figure 4.14. SEM images of a) a-Si solar cell (2-11961) on a 500nm sphere back reflector and b) the ITO 

on the same solar cell  

a) b) 
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The normalized QEs of devices 2-11961, 2-12006, and 2-12035 for a 0V applied bias 

are shown in Figure 4.16. The normalized QE plot at a 0.5V bias (Figure 4.17) only shows 

the data for 2-11961 and 2-12035 because 2-12006 shorted during testing. The reference 

device (2-12119B) in both Figure 4.16 and Figure 4.17 was built with the same device 

parameters but on a SS substrate. Although each back reflector and solar cell device was 

fabricated identically, there is a significant decrease in the QE enhancement at longer 

wavelengths for device 2-12006 as compared to 2-11961 as well as 2-12035 as compared to 

2-12006. All of the devices were fabricated in reactor 2 which became contaminated due to 

silicon germanium experiments that were being performed in parallel to this research. This 

contamination is attributed to the degradation in solar cell device performance.  

Figure 4.15 shows the QE enhancement ratio of the devices to the stainless steel 

reference device. The peak enhancement ratio occurs at a wavelength of 760nm and is about 

9.42 for device 2-11961, 5.6 for device 2-12006, and 3.88 for device 2-12035. Other device 

parameters are summarized along with data for amorphous devices on 250nm back reflector 

in Table 4.2. 
 

 
Figure 4.15. QE enhancement ratios over SS substrate for devices 2-11961, 2-12006, and 2-12035 for a 0V 

applied bias 
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Figure 4.16. Normalized quantum efficiency (Vbias=0V) for three a-Si:H devices (2-11961, 2-12006, and 
2-12035) on 500nm sphere back reflectors and a reference device (2-12119B) on a stainless steel substrate 

 
Figure 4.17. Normalized quantum efficiency (Vbias=0.5V) for two3 a-Si:H devices (2-11961 and 2-12035) 

on 500nm sphere back reflectors and a reference device (2-12119B) on a stainless steel substrate 

                                                 
3 The 0.5V applied bias QE for 2-12006 is not presented here because the device shorted during testing 
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4.3.2 Devices on 250nm Sphere Back Reflectors

Three a-Si devices we

coated with 300nm of silver. The devices were built with a target intrinsic layer thickness of 

0.25 µm (see Figure 2.7 and accompanying discussion for other device dimensions). Device 

shorting was a frequent problem during testing and characterization just as it was for the 

amorphous devices on the 500nm sphere

device with a thicker n+ layer or intrinsic layer could be 

this was considered to be beyond the scope of this project. 

Device data was collected for two of the three devices by using great care in placing 

the probe contacts similar to the way data was collected for amorphous devices on 500nm 

spheres. Device 2-12152 was shorted on all 9 contacts made and no data was able to

collected for this cell. Figure 

4.18 b) is an SEM image of the ITO contact of the same device. It is easy to imagine a probe 

tip penetrating this surface just like the surface of the device on 500nm spheres in 

4.14. 

 

Figure 4.18. SEM images of a)  a
solar cell looking down on the ITO

a) 

41  

4.3.2 Devices on 250nm Sphere Back Reflectors 

Si devices were built on 250nm sphere substrates spin-coated at 8000RPM 

coated with 300nm of silver. The devices were built with a target intrinsic layer thickness of 

and accompanying discussion for other device dimensions). Device 

shorting was a frequent problem during testing and characterization just as it was for the 

amorphous devices on the 500nm sphere back reflectors. It is conceivable that an amorphous 

device with a thicker n+ layer or intrinsic layer could be designed to eliminate

s considered to be beyond the scope of this project.  

Device data was collected for two of the three devices by using great care in placing 

the probe contacts similar to the way data was collected for amorphous devices on 500nm 

12152 was shorted on all 9 contacts made and no data was able to

Figure 4.18 a) shows an SEM image of the device 2

b) is an SEM image of the ITO contact of the same device. It is easy to imagine a probe 

tip penetrating this surface just like the surface of the device on 500nm spheres in 

   
a-Si solar cell (2-12110) on a 250nm sphere back reflector
solar cell looking down on the ITO contact 

b) 

coated at 8000RPM 

coated with 300nm of silver. The devices were built with a target intrinsic layer thickness of 

and accompanying discussion for other device dimensions). Device 

shorting was a frequent problem during testing and characterization just as it was for the 

that an amorphous 

designed to eliminate this issue, but 

Device data was collected for two of the three devices by using great care in placing 

the probe contacts similar to the way data was collected for amorphous devices on 500nm 

12152 was shorted on all 9 contacts made and no data was able to be 

device 2-12110. Figure 

b) is an SEM image of the ITO contact of the same device. It is easy to imagine a probe 

tip penetrating this surface just like the surface of the device on 500nm spheres in Figure 

 
0nm sphere back reflector and b) the same 
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Figure 4.19. Normalized quantum efficiency (Vbias=0V) for two  a-Si:H devices (2-12110 and  2-12119) 

on 250nm sphere back reflectors and a reference device (2-12119B) on a stainless steel substrate 

 
Figure 4.20. Normalized quantum efficiency (Vbias=0.5V) for an a-Si:H devices (2-121104) on 250nm 

sphere back reflectors and a reference device (2-12119B) on a stainless steel substrate 

                                                 
4 The 0.5V applied bias QE for 2-12110 is not presented here because the device shorted during testing 
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The normalized QEs of devices 2-12110 and 2-12119 for a 0V applied bias are shown 

in Figure 4.19. The normalized QE plot at a 0.5V bias (Figure 4.20) only shows the data for 

2-12110 because device 2-12119 shorted during testing. The reference device (2-12119B) in 

both Figure 4.19 and Figure 4.20 was built with the same device parameters but on a SS 

substrate. It is the same device as the reference used in Figure 4.16 and Figure 4.17 for 

devices on 500nm sphere back reflectors. The improvement in QE at wavelengths greater 

than 600nm was significant for both devices. The peak enhancement occurs at 760nm and 

was 10.5 for device 2-12110 and was 6.6 for 2-12119.  Other device parameters are 

summarized along with data for amorphous devices on 250nm back reflector in Table 4.2. 

 

Figure 4.21. QE enhancement ratios over SS substrate for devices 2-12110 and 2-12119 for a 0V bias 

Table 4.2 summarizes the device characteristics for all amorphous silicon solar cells 

fabricated on nanosphere back reflectors in this research. Device 2-11925 shorted due to a 

lack of a post-anneal after the spin coating of the spheres. This was discussed in greater detail 

in Chapter 2. It should once again be noted that 2-12006 and 2-12035 were fabricated while 

reactor 2 was contaminated and the degradation in performance of these devices is attributed 
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to this. Devices 2-11961, 2-12110, and 2-12119 had an average increase in short circuit 

current over the stainless steel reference of 27%; an average increase in JSC (found by 

summing currents from the QE measurement) of 18%; and an average maximum 

enhancement factor of 8.84 at 760nm.  

 

Table 4.2. Summary of device characteristics for amorphous solar cells and reference cells 

 

Device 
 

Substrate 
VOC 
(V) 

ISC 
(mA) 

 

FF 
QE ratio to 

SS at 760nm 
JSC from QE 
(mA/cm2) 

2-11925 500nm BR All contacts shorted. 

2-11961 500nm BR 0.775 1.32 52.2 9.42 12.9 

2-12006 500nm BR 0.679 1.01 56.2 5.57 11.56 

2-12035 500nm BR 0.716 1.03 56 3.41 10.99 

2-12110 250nm BR 0.755 1.36 51 10.49 13.23 

2-12119A 250nm BR 0.751 1.36 59.2 6.60 12.82 

2-12152 250nm BR All contacts shorted. 

2-12119B SS Ref 0.829 1.06 62.8 1 11 
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CHAPTER 5.  CONCLUSIONS AND FUTURE WORK 

The objective of this research was to design a back reflector to increase light trapping 

in amorphous and nanocrystalline silicon solar cells. This was completed by using texturing 

substrates with silica nanospheres. Back reflectors were fabricated with 250nm and 500nm 

spheres and exhibited peaks in diffusion reflection at wavelengths of 650nm and 1050nm, 

respectively. These peaks were determined to be due to the constructive interference Bragg 

diffraction of the non-close packed spheres, and their smooth characteristic was presumed to 

be due to the lack of long-range order. Future work would include simulating the back 

reflector and fabricating substrates with 350nm silica spheres. The latter should shift the peak 

in diffuse reflection to the optimum wavelength of about 750nm.  

Nanocrystalline devices built on the 250nm back reflectors showed substantial 

increases in quantum efficiency over similar devices built on stainless steel substrates. A 

factor of two increase in QE at 900nm as compared to a device on a silver coated substrate 

was also observed. With careful probe placement, sufficient data was also collected from 

amorphous silicon devices to measure an increased carrier collection as compared to a 

similar device built on a stainless steel substrate. Future work is necessary to design an 

amorphous device with an increased n+ layer thickness to prevent frequent contact shorting.  

Other future work would include designing an industrially scalable nanosphere 

deposition technique. Spin coating is not a feasible process for the dimensions of the solar 

cells fabricated in industry. One possible solution would be to use pull coating at a rate which 

deposits spheres with the same packing density achieved in this research.  
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APPENDIX. PACKING DENSITY CHARACTERIZATION 

For this project, a MATLAB script was written and used to characterize the packing 

density of spheres on a substrate. The script takes advantage of the contrast between the silica 

spheres and the substrate in the SEM images. This contrast can be seen in Figure 5.1 a). The 

code for the MATLAB m-file is given in Figure 5.2. The script works by reading in the SEM 

image to a 256-bit grayscale matrix with the size determined by the image resolution using 

the imread() function. The SEM image resolution can be set during acquisition and the user 

must specify this same resolution in the script. A value is then set at the midpoint between 

the average grayscale value of the sphere area of the image and the average grayscale value 

of the substrate area of the image. A loop then checks each pixel to see if its value is greater 

than this grayscale value. If the pixel value is greater than this point, it is considered to be a 

sphere pixel. The total number of sphere pixels is divided by the total number of pixels in the 

image and printed out as the packing density. Also, an image is generated with the sphere 

pixels in white and substrate pixels in black like the image in Figure 5.1 b). This image helps 

to determine if the set point is correct and if the sphere/substrate contrast is sufficient. 

  
Figure 5.1. a) SEM image of a back reflector and b) image output from MATLAB script 

a) b) 
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%image resolution  
xPIXELS=900;  
yPIXELS=900;  
  
%input file name  
I=imread('filein.TIF');  
  
%cutoff point for sphere pixel given as a percentag e of the average value  
%of the image  
N=mean(mean(I))*0.8  
  
%initialize variables  
Ibw=I;  
totWhite=0  
  
%loop for every pixel in image  
for i=1:xPIXELS  
    for j=1:yPIXELS  
        %if pixel is brighter than cutoff pixel, se t output image pixel  
        %to white and add one to sphere pixel count  else set to black  
        if (I(i,j)>N)  
            Ibw(i,j)=256;  
            totWhite=totWhite+1;  
        else  
            Ibw(i,j)=1;  
        end  
    end  
end  
  
%normalize sphere pixel count to total number of pi xels  
totWhite=100*totWhite/(xPIXELS*yPIXELS)  
  
%show image with percentage packing density in titl e 
imshow(Ibw1);  
title([num2str(totWhite) '%'])  
  
%save and close image  
saveas(gcf,['./Results/filein.pdf'])  
close  

 

Figure 5.2. MATLAB m-file script used to characterize the silica sphere packing density 
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